
// INSTRUCTIONS
// ------------
// Compile this code. You should see a happy-face character on a field of
// periods. You can move the character with the 'w', 'a', 's', and 'd' keys.
//
// Read through this code! Try to understand it before starting the assignment.
// Comment confusing lines with what you think code is doing, and experiment
// with existing code to test your understanding.
// Once you feel comfortable with this code, accomplish each of the following,
// and make sure your code compiles and runs after each step is completed.
//
// 1) Object Oriented Refactoring
//   a) Write a class called Entity to store two public integers named x and y,
//      and a char named icon (the player data).
//   b) Remove x, y, and icon (the player data) from main(), create an instance
//      of the Entity class (named whatever you like) in main(), and use its
//      members as replacements for the x, y, and icon variables that were
//      removed.
//   c) Write a parameterized constructor for the Entity class that sets x, y,
//      and icon, and use it when creating the instance.
//   d) Make x, y, and icon private variables of Entity, and create Accessor
//      and Mutator (or Getter and Setter) functions to use them in main().
//      (hint: "player.x++" could be "player.setX(player.getX()+1);" )
//   e) Write a struct called Vector2, which has two int variables, x and y.
//   f) Write a default constructor for Vector2, which sets x and y to 0.
//   g) Write a parameterized constructor for Vector2, which sets x and y.
//   h) Remove x, and y from Entity, add an instance of the Vector2 structure
//      named "pos" to the Entity class, and use pos's members as replacements
//      for the x, and y variables that were removed.
//   i) Remove height and width (in the game data) from main(), create an
//      instance of the Vector2 structure named "size", and use size's x member
//      as a replacement for width, and size's y member as a replacement for
//      height.
//   j) Write a method in Vector2 with the signature
//      "bool is(int a_x, int a_y)". "is" should return true if a_x is equal to
//      that instance's x, and a_y is equal that instance's y.
//   k) Instantiate a new object of class Vector2 called "winPosition", and set
//      it's x, y value to size.x/2, size.y/2.
// 2) Add Game Logic
//   a) Add code to the while-loop so that when the player reaches
//      "winPosition", which should be determined by using the "is" method, the
//      "state" variable should be set to WIN, ending the game.
//   b) Add code to the while-loop so that the state variable is set to to LOST
//      if the player leaves the play field (ending the game).
// 3) Using enums
//   a) Create an enum called "GameState" with the possible values "RUNNING",
//      "WIN", "LOST", and "USER_QUIT".
//   b) Replace the state variable with an isntance of the GameState enum.





// lab1: simplegame_OOP
// <insert your name here>
// read main.cpp, and follow the instructions at the bottom of main.cpp

#include <iostream>		// std::cout

using namespace std;


#include <windows.h>	// SetConsoleCursorPosition(HANDLE,COORD)
#include <conio.h>		// _getch()

struct Vector2 {
	int x;
	int y;

	Vector2() :
		x(0), y(0) {

	}

	Vector2(int x, int y) {
		x = x;
		y = y;
	}

	bool is(int a_x, int a_y) {
		if (a_x == x && a_y == y) {
			return true;
		}

		return false;
	}

};

class Entity {

public:
	Entity(int x, int y, char i) {
		pos.x = x;
		pos.y = y;
		icon = i;
	}

	void setX(int x) {
		pos.x = x;
	
	}

	int getX() {
		pos.x;
	}

	void setY(int y) {
		pos.y = y;
	}

	int getY() {
		pos.y;
	}

	void setIcon(char i) {
		icon = i;
	}

	char getIcon() {
		icon;
	}

private:
	Vector2 pos;
	char icon;

};

enum GameState {
	RUNNING, WIN, LOST, USER_QUIT
};



/**
* moves the console cursor to the given x/y coordinate
* @param x
* @param y
*/
void moveCursor(int x, int y)
{
	COORD c = { x,y };
	SetConsoleCursorPosition(GetStdHandle(STD_OUTPUT_HANDLE), c);
}

int main()
{
	// player data
	Entity e(3, 4, 1);



	// game data
	GameState state = RUNNING;
	int input;
	Vector2 size(20, 15);
	Vector2 winPosition(size.x / 2, size.y / 2);

	do
	{
		// draw the game world
		moveCursor(0, 0);
		for (int row = 0; row < size.x; row++)
		{
			for (int col = 0; col < size.y; col++)
			{
				cout << '.';
			}
			cout << '\n';
		}
		// draw the player
		moveCursor(e.getX(), e.getY());
		cout << e.getIcon();

		// get input from the user (wait for one key press)
		input = _getch();

		// process input from the user
		switch (input)
		{
		case 'w':	e.setY(e.getY() - 1);	break;	// move up
		case 'a':	e.setX(e.getX() - 1);	break;	// move left
		case 's':	e.setY(e.getY() + 1);	break;	// move down
		case 'd':	e.setX(e.getX() + 1);	break;	// move right
		case 27:	state = USER_QUIT;	break;	// quit
		}
		// show the game state message
		moveCursor(0, size.y + 1);
		switch (state)
		{
		case WIN:	cout << "You WON! Congratulations!\n";	break;
		case LOST:	cout << "You lost...\n";				break;
		}

		if (winPosition.is(e.getX(), e.getY()))
		{
			state = WIN;
		}
		else
		{
			state = LOST;
		}
	} while (state == RUNNING);

	// user must press ESCAPE before closing the program
	cout << "press ESCAPE to quit\n";
	while (_getch() != 27);
	return 0;
[bookmark: _GoBack]};
